Линейное подпространство

Линейное подпространство

Лине́йное простра́нство, или ве́кторное простра́нство — основной объект изучения линейной алгебры.

Содержание

Определение

Линейное, или векторное пространство L \left( P \right)  над полем P — это непустое множество L, на котором введены операции

  1. сложения, то есть каждой паре элементов множества \mathbf{x}, \mathbf{y} \in L ставится в соответствие элемент того же множества, обозначаемый  \mathbf{x} + \mathbf{y}  \in L и
  2. умножения на скаляр (то есть элемент поля P), то есть любому элементу \lambda \in P и любому элементу \mathbf{x} \in L ставится в соответствии элемент из L \left( P \right)  , обозначаемый   \lambda\mathbf{x}\in L(P) .

При этом удовлетворяются следующие условия:

  1. \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}, для любых \mathbf{x}, \mathbf{y}\in L (коммутативность сложения);
  2. \mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}, для любых \mathbf{x}, \mathbf{y}, \mathbf{z} \in L (ассоциативность сложения);
  3. существует такой элемент \theta \in L, что \mathbf{x} + \theta = \mathbf{x} для любого \mathbf{x} \in L (существование нейтрального элемента относительно сложения), в частности L не пусто;
  4. для любого \mathbf{x} \in L существует такой элемент -\mathbf{x} \in L, что \mathbf{x} + (-\mathbf{x}) = \theta (существование противоположного элемента).
  5. \alpha(\beta\mathbf{x}) = (\alpha\beta)\mathbf{x} (ассоциативность умножения на скаляр);
  6. 1\cdot\mathbf{x} = \mathbf{x} (существование нейтрального элемента относительно умножения).
  7. (\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x} (дистрибутивность умножения на скаляр относительно сложения);
  8. \alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}(дистрибутивность сложения относительно умножения на скаляр).

Элементы множества L называют векторами, а элементы поля Pскалярами.

Простейшие свойства

  1. Нейтральный элемент \theta \in L является единственным.
  2.  0\cdot\mathbf{x} = \theta для любого \mathbf{x} \in L.
  3. Для любого \mathbf{x} \in L противоположный элемент -\mathbf{x} \in L является единственным.
  4. (-1)\mathbf{x} = -\mathbf{x} для любого \mathbf{x} \in L.
  5. (-\alpha)\mathbf{x} = \alpha(-\mathbf{x}) = -(\alpha\mathbf{x}) для любых \alpha \in P и \mathbf{x} \in L.

Связанные определения и свойства

  • Линейное подпространство или векторное подпространство ― непустое подмножество P линейного пространства L такое, что P само является линейным пространством по отношению к определенным в L действиям сложения и умножения на скаляр.
  • Конечная сумма вида
\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_n\mathbf{x}_n
называется линейной комбинацией элементов \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in L с коэффициентами \alpha_1, \alpha_2, \ldots, \alpha_n \in P.
  • Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.
  • Элементы \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n называются линейно зависимыми, если существует нетривиальная линейная комбинация (1), равная элементу \mathbf{0} \in L. В противном случае эти элементы называются линейно независимыми.
  • Бесконечное подмножество векторов из L называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.
  • Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество — базисом.
  • Любые n линейно независимых элементов n-мерного пространства образуют базис этого пространства.
  • Любой вектор \mathbf{x} \in L можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:
\mathbf{x} = \alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_n\mathbf{x}_n.

Примеры

Дополнительные структуры

См. также

Литература

  • Гельфанд И.М. Лекции по линейной алгебре. изд. МЦНМО, 1998.

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Линейное подпространство" в других словарях:

  • ЛИНЕЙНОЕ ПОДПРОСТРАНСТВО — векторное подпространств о, непустое подмножество L(линейного) векторного пространства Е над полем Ктакое, что L само является векторным пространством по отношению к определенным в Едействиям сложения и умножения на скаляр. Множество L+x0, где… …   Математическая энциклопедия

  • Линейное пространство — Линейное пространство, или векторное пространство  основной объект изучения линейной алгебры. Содержание 1 Определение 2 Простейшие свойства 3 Связанные определения и свойства …   Википедия

  • ЛИНЕЙНОЕ УРАВНЕНИЕ — уравнение вида где А линейный оператор, действующий из векторного пространства Xв векторное пространство В, х неизвестный элемент из X, b заданный элемент из В(свободный член). Если 6=0, то Л. у. наз. однородным. Решением Л. у. наз. элемент… …   Математическая энциклопедия

  • Линейное уравнение —         уравнение, в которое неизвестные входят в 1 й степени (т. е. линейно) и отсутствуют члены, содержащие произведения неизвестных. Несколько Л. у. относительно одних и тех же неизвестных образуют систему Л. у. Решением системы Л. у. называют …   Большая советская энциклопедия

  • Линейное отображение — У этого термина существуют и другие значения, см. Отображение (значения). Линейное отображение, линейный оператор  обобщение линейной числовой функции (точнее, функции ) на случай более общего множества аргументов и значений. Линейные… …   Википедия

  • ЛИНЕЙНОЕ УРАВНЕНИЕ — алгебраическое алгебраическое уравнение 1 й степени по совокупности неизвестных, т. е. уравнение вида Всякая система Л. у. может быть записана в виде где ти n натуральные числа; а ij (i=1, 2, . . ., т, j=1, 2, . . ., n) наз. коэффициентами при… …   Математическая энциклопедия

  • Линейное нормированное пространство — В евклидовом пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина нуль вектора, , равна нулю; длина любого другого вектора… …   Википедия

  • Линейное преобразование — Линейным отображением (линейным оператором) векторного пространства LK над полем K в векторное пространство MK (над тем же полем K) называется отображение , удовлетворяющее условию линейности f(αx + βy) = αf(x) + βf(y). для всех и …   Википедия

  • ЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В БАНАХОВОМ ПРОСТРАНСТВЕ — уравнение вида где A0(t), A1(t).при каждом t линейные операторы в банаховом пространстве Е, g(t) заданная, a u(t) искомая функции со значениями в Е;производная ипонимается как предел по норме Еразностного отношения. 1. Линейное дифференциальное… …   Математическая энциклопедия

  • ЛИНЕЙНОЕ ПРЕОБРАЗОВАНИЕ — отображение векторного пространства в себя, при к ром образом суммы двух векторов является сумма их образов, а образом произведения вектора на число произведение образа вектора на это число. Если V векторное пространство, f заданное в нем Л. п. и …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»