Интерференция (физика)

Интерференция (физика)

Интерференция (физика)

Это статья об интерференции в физике. См. также Интерференция (неоднозначность) и Интерференция света

Картина интерференции двух круговых когерентных волн, в зависимости от длины волны и расстояния между источниками

Интерференция волн — нелинейное сложение интенсивностей двух или нескольких волн, сопровождающееся чередованием в пространстве максимумов и минимумов интенсивности. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции волн не происходит сложения их энергий. Интерференция волн приводит к перераспределению энергии колебаний между различными близко расположенными частицами среды. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.

Содержание

Расчет результата сложения двух сферических волн

Если в некоторой однородной и изотропной среде два точечных источника возбуждают сферические волны, то в произвольной точке пространства M может происходить наложение волн в соответствии с принципом суперпозиции (наложения): каждая точка среды, куда приходят две или несколько волн, принимает участие в колебаниях, вызванных каждой волной в отдельности не взаимодействуют друг с другом и распространяются независимо друг от друга.

Две одновременно распространяющиеся синусоидальные сферические волны s_1\! и s_2\!, созданные точечными источниками B1 и B2, вызовут в точке M колебание, которое, по принципу суперпозиции, описывается формулой s=s_1+s_2\!. Согласно формуле сферической волны:

s_1={A_1 \over r_1}\sin(\omega_1 t - k_1r_1 + \alpha_1)={A_1 \over r_1}\sin \Phi_1,
s_2={A_2 \over r_2}\sin(\omega_2 t - k_2r_2 + \alpha_2)={A_2 \over r_2}\sin \Phi_2,

где

\Phi_1=\omega_1 t - k_1r_1 + \alpha_1\! и \Phi_2=\omega_2 t - k_2r_2 + \alpha_2\! – фазы распространяющихся волн
k_1\! и k_2\! — волновые числа (k={\omega \over v}={2\pi \over \lambda})
\omega_1\! и \omega_2\! — циклические частоты каждой волны
\alpha_1\! и \alpha_2\! — начальные фазы,
r_1\! и r_2\! — расстояния от точки М до точечных источников B1 и B2

В результирующей волне s=s_1+s_2={A \over r}\sin \Phi, амплитуда {A \over r} и фаза \Phi\! определяются формулами:

{A \over r}=\sqrt{\left({A_1 \over r_1}\right)^2 + \left({A_2 \over r_2}\right)^2 + 2{A_1 \over r_1}{A_2 \over r_2}\cos(\Phi_2-\Phi_1)},
\Phi=\operatorname{arctg}{ {{A_1 \over r_1}\sin\Phi_1 + {A_2 \over r_2}\sin\Phi_2} \over {{A_1 \over r_1}\cos\Phi_1 + {A_2 \over r_2}\cos\Phi_2} }

Когерентность волн

Волны и возбуждающие их источники называются когерентными, если разность фаз волн \Phi_2-\Phi_1\! не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн \Phi_2-\Phi_1\! изменяется с течением времени. Формула для разности :

\Phi_2-\Phi_1=(\omega_1-\omega_2)t-(k_2r_2-k_1r_1)+(\alpha_2-\alpha_1)\!, где k_1={\omega_1 \over v}, k_2={\omega_2 \over v},

v\! – скорость распространения волны, одинаковая для обеих волн в данной среде. В приведенном выше выражении от времени зависит только первый член. Две синусоидальные волны когерентны, если их частоты одинаковы (ω1 = ω2), и некогерентны, если их частоты различны.

Для когерентных волн (ω1 = ω2 = ω) при условии α2 - α1 = 0

\Phi_2-\Phi_1=-{\omega \over v}(r_2-r_1)=-k(r_2-r_1),
{A \over r}=\sqrt{\left({A_1 \over r_1}\right)^2 + \left({A_2 \over r_2}\right)^2 + {2A_1A_2 \over r_1r_2}\cos k(r_2-r_1)}.

Амплитуда результирующих колебаний в любой точке среды не зависит от времени. Косинус равен единице, а амплитуда колебаний в результирующей волне максимальна \left({A \over r}={A_1 \over r_1}+{A_2 \over r_2} \right) во всех точках среды, для которых k(r_2-r_1)=2m\pi\!, где m=0, \pm 1, \pm 2, ...\!(m-целое) или r_2-r_1=m\lambda\!, (так как k={2\pi \over \lambda})

Величина r_2-r_1=\Delta\! называется геометрической разностью хода волн от их источников B1 и B2, до рассматриваемой точки среды.

Амплитуда колебаний в результирующей волне минимальна \left({A \over r}= \begin{vmatrix}{A_1 \over r_1}-{A_2 \over r_2} \end{vmatrix} \right) во всех точках среды, для которых

k(r_2-r_1)=(2m+1)\pi\!, где m=0,1, 2,...\! (m-натуральное),

или

\Delta=r_2-r_1=(2m+1){\lambda \over 2}.

При наложении когерентных волн квадрат амплитуды и энергия результирующей волны отличны от суммы квадратов амплитуд и суммы энергий накладываемых волн.

См. также

Литература

  • Яворский Б. М., Селезнев Ю. А., Справочное руководство по физике., М., Наука., 1984

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Интерференция (физика)" в других словарях:

  • Интерференция света — Интерференция света  опыт Юнга Интерференция света  перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве ма …   Википедия

  • Интерференция — Интерференция: Интерференция (физика)  изменение в характере звуковых, тепловых, световых и электрических явлений, объясняемое колебательным движением: в первом случае частиц звучащего тела, в остальных трех  колебанием. Интерференция… …   Википедия

  • ФИЗИКА — наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств …   Физическая энциклопедия

  • Физика твёрдого тела — Физика твёрдого тела  раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… …   Википедия

  • ФИЗИКА — (от древнегреч. physis природа). Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина физика сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства… …   Энциклопедия Кольера

  • Мезоскопическая физика — раздел физики конденсированных сред, в котором рассматриваются свойства систем на масштабах промежуточных между макроскопическим и микроскопическим. Под микроскопическим масштабом понимают размеры, сравнимые с размерами одного атома или с длиной… …   Википедия

  • Оператор (физика) — У этого термина существуют и другие значения, см. Оператор.     Квантовая механика …   Википедия

  • Эфир (физика) — У этого термина существуют и другие значения, см. Эфир. Эфир (светоносный эфир, от др. греч. αἰθήρ, верхний слой воздуха; лат. aether)  гипотетическая всепроникающая среда[1], колебания которой проявляют себя как электромагнитные волны… …   Википедия

  • Базовые физические понятия — # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х …   Википедия

  • Спекл-интерферометрия — (от англ. speckle  пятнышко, крапинка)  один из методов пространственной интерферометрии, основанный на анализе зернистой структуры изображения объекта. Предложен в 1970 году Антуаном Лабейри. Содержание 1 Сущность метода …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»