Нормальная кривизна

Нормальная кривизна

В дифференциальной геометрии, кривизна́ — собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).

Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например, как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт совпадение (локальное, но не глобальное) изучаемого «объекта» с «плоским» объектом.

В этой статье приводятся только несколько простейших примеров определений понятия кривизны.

Содержание

Кривизна кривой

Пусть γ(t) — регулярная кривая в d-мерном евклидовом пространстве, параметризованная длиной. Тогда

\kappa=|\ddot\gamma(t)|

называется кривизной кривой γ в точке p = γ(t), здесь \ddot\gamma(t) обозначает вторую производную по t. Вектор

k=\ddot\gamma(t)

называется вектором кривизны γ в точке p = γ(t0).

Для кривой, заданной параметрически в общем случае (параметр не обязательно является длиной), кривизна отображается формулой

\kappa=\frac{|\dot\gamma\times \ddot\gamma|}{|\dot\gamma|^3},

где \dot\gamma и \ddot\gamma соответственно обозначают первую и вторую производную радиус-вектора γ в требуемой точке.

Для того чтобы кривая γ совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы кривизна (или вектор кривизны) тождественно равнялась нулю.

Величина, обратная кривизне кривой, называется радиусом кривизны; он совпадает с радиусом соприкасающейся окружности в данной точке кривой. Центр этой окружности называется центром кривизны.

Кривизна поверхности

Пусть Φ есть регулярная поверхность в трёхмерном евклидовом пространстве. Пусть p — точка Φ, Tp — касательная плоскость к Φ в точке p, n — единичная нормаль к Φ в точке p, а — πe плоскость, проходящая через n и некоторый единичный вектор e в Tp. Кривая γe , получающаяся как пересечение плоскости πe с поверхностью Φ, называется нормальным сечением поверхности Φ в точке p в направлении e. Величина

\kappa_e=k\cdot n

где \cdot обозначает скалярное произведение, а k — вектор кривизны γe в точке p, называется нормальной кривизной поверхности Φ в направлении e. С точностью до знака нормальная кривизна равна кривизне кривой γe.

В касательной плоскости Tp существуют два перпендикулярных направления e1 и e2 такие, что нормальную кривизну в произвольном направлении можно представить с помощью так называемой формулы Эйлера:

κe = κ1cos2α + κ2sin2α

где α — угол между e1 и e2, a величины κ1 и κ2 нормальные кривизны в направлениях e1 и e2, они называются главными кривизнами, а направления e1 и e2 — главными направлениями поверхности в точке p. Главные кривизны являются экстремальными значениями нормальных кривизн. Структуру нормальных кривизн в данной точке поверхности удобно графически изображать с помощью индикатрисы Дюпена.

Величина

H = κ1 + κ2, (иногда \frac{\kappa_1+\kappa_2}2)

называется средней кривизной поверхности. Величина

K = κ1κ2

называется гауссовой кривизной поверхности.

Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности не изменяется при изометрических изгибаниях.

См. также

Литература


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Нормальная кривизна" в других словарях:

  • НОРМАЛЬНАЯ КРИВИЗНА — регулярной поверхности величина, характеризующая отклонение поверхности в направлении от своей касательной плоскости в точке Р, совпадающая по абсолютной величине с кривизной соответствующего нормального сечения. Н. к. в направлении равна где k… …   Математическая энциклопедия

  • Кривизна — В дифференциальной геометрии, кривизна собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т.… …   Википедия

  • Кривизна кривой — В дифференциальной геометрии, кривизна собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т.… …   Википедия

  • КРИВИЗНА — собирательное название ряда количественных характеристик (численных, векторных, тензорных), описывающих отклонение свойств того или иного объекта (кривой, поверхности, риманова пространства и др.) от соответствующих объектов (прямая, плоскость,… …   Математическая энциклопедия

  • ГЛАВНАЯ КРИВИЗНА — нормальная кривизна поверхности в главном направлении, т. е. в направлении, где она достигает своего экстремального значения. Г. к. являются корнями квадратного уравнения где коэффициенты первой квадратичной формы, a L, М и N второй квадратичной… …   Математическая энциклопедия

  • ПОЛНАЯ КРИВИЗНА — 1) П. к. в точке поверхности Ф в евклидовом пространстве скалярная величина К, равная произведению главных (нормальных) кривизн k1 и k2, вычисляемых в точке поверхности: K=k1k2;наз. также гауссовой кривизной поверхности. Понятие П. к. обобщается… …   Математическая энциклопедия

  • Поверхность — У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность  традиционное название для двумерного многообразия в …   Википедия

  • Касательная плоскость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

  • Внутренняя геометрия поверхностей — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

  • Внутренняя геометрия поверхности — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»