Предикатная логика

Предикатная логика

Логика первого порядка (исчисление предикатов) — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций, и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высшего порядка.

Содержание

Основные определения

Язык логики первого порядка строится на основе сигнатуры, состоящей из множества функциональных символов \mathcal{F} и множества предикатных символов \mathcal{P}. С каждым функциональным и предикатным символом связана арность, то есть число возможных аргументов. Допускаются как функциональные так и предикатные символы арности 0. Первые иногда выделяют в отдельное множество констант. Кроме того используются следующие дополнительные символы

  • Символы переменных (обычно x,y,z,x1,y1,z1,x2,y2,z2, и т. д.),
  • Пропозициональные связки: \lor,\land,\neg,\to,
  • Кванторы: всеобщности \forall и существования \exists,
  • Служебные символы: скобки и запятая.

Перечисленные символы вместе с символами из \mathcal{P} и \mathcal{F} образуют Алфавит логики первого порядка. Более сложные конструкции определяются индуктивно:

  • Терм есть символ переменной, либо имеет вид f(t_1,\ldots,t_n), где f — функциональный символ арности n, а t_1,\ldots,t_n — термы.
  • Атом имеет вид p(t_1,\ldots,t_n), где p — предикатный символ арности n, а t_1,\ldots,t_n — термы.
  • Формула — это либо атом, либо одна из следующих конструкций: \neg F, F_1\lor F_2, F_1\land F_2, F_1\to F_2, \forall x F, \exists x F, где F,F1,F2 — формулы, а x — переменная.

Переменная x называется связанной в формуле F, если F имеет вид \forall x G либо \exists x G, или же представима в одной из форм \neg H, F_1\lor F_2, F_1\land F_2, F_1\to F_2, причем x уже связанна в H, F1 и F2. Если x не связанна в F, ее называют свободной в F. Формулу без свободных переменных называют замкнутой формулой, или предложением. Теорией первого порядка называют любое множество предложений.

Аксиоматика и доказательство формул

Система логических аксиом логики первого порядка состоит из аксиом исчисления высказываний дополненной двумя новыми аксиомами:

  • \forall x A \to A[t/x],
  • A[t/x] \to \exists x A,

где A[t / x] — формула, полученная в результате подстановки терма t вместо переменной x в формуле A.

Правил вывода 3:

Интерпретация

В классическом случае интерпретация формул логики первого порядка задается на модели первого порядка, которая определяется следующими данными

  • Несущее множество \mathcal{D},
  • Семантическая функция σ, отображающая
    • каждый n-арный функциональный символ f из \mathcal{F} в n-арную функцию \sigma(f):\mathcal{D}\times\ldots\times\mathcal{D}\rightarrow\mathcal{D},
    • каждый n-арный предикатный символ p из \mathcal{P} в n-арное отношение \sigma(p)\subseteq\mathcal{D}\times\ldots\times\mathcal{D}.

Обычно принято, отождествлять несущее множество \mathcal{D} и саму модель, подразумевая неявно семантическую функцию, если это не ведет к неоднозначности.

Предположим s — функция, отображающая каждую переменную в некоторый элемент из \mathcal{D}, которую мы будем называть подстановкой. Интерпретация [\![t]\!]_s терма t на\mathcal{D} относительно подстановки s задается индуктивно

  • [\![x]\!]_s = s(x), если x — переменная,
  • [\![f(x_1,\ldots,x_n)]\!]_s = \sigma(f)(\![x_1]\!]_s,\ldots,\![x_n]\!]_s)

В таком же духе определяется отношение истинности \models_s формул на \mathcal{D} относительно s

  • \mathcal{D}\models_s p(t_1,\ldots,t_n), тогда и только тогда, когда \sigma(p)( \![x_1]\!]_s,\ldots,\![x_n]\!]_s),
  • \mathcal{D}\models_s \neg\phi, тогда и только тогда, когда \mathcal{D}\models_s \phi — ложно,
  • \mathcal{D}\models_s \phi\land\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi и \mathcal{D}\models_s \psi истинны,'
  • \mathcal{D}\models_s \phi\lor\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi или \mathcal{D}\models_s \psi истинно,
  • \mathcal{D}\models_s \phi\to\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi влечет \mathcal{D}\models_s \psi,
  • \mathcal{D}\models_s \exists x\, \phi, тогда и только тогда, когда \mathcal{D}\models_{s'} \phi для некоторой подстановки s', которая отличается от s только на переменной x,
  • \mathcal{D}\models_s \forall x\, \phi, тогда и только тогда, когда \mathcal{D}\models_{s'} \phi для всех подстановок s', которые отличается от s только на переменной x.

Формула φ, истинна на \mathcal{D}, что обозначается как \mathcal{D}\models \phi, если \mathcal{D}\models_s \phi, для всех подстановок s. Формула φ называется общезначимой, что обозначается как \models \phi, если \mathcal{D}\models \phi для всех моделей \mathcal{D}. Формула φ называется выполнимой , если \mathcal{D}\models \phi хотябы для одной \mathcal{D}.

Свойства и основные результаты

Логика первого порядка обладает рядом полезных свойств, которые делают ее очень привлекательной в качестве основного инструмента формализации математики. Главными из них являются полнота (это означает, что для любой формулы выводима либо она сама, либо ее отрицание) и непротиворечивость (ни одна формула не может быть выведена одновременно со своим отрицанием). При этом если непротиворечивость более или менее очевидна, то полнота — нетривиальный результат полученный Гёделем в 1930 году (теорема Гёделя о полноте). По сути теорема Гёделя устанавливает фундаментальную эквивалентность понятий доказуемости и общезначимости.

Логика первого порядка обладает свойством компактности: если некоторое множество формул не выполнимо, то невыполнимо также некоторое его конечное подмножество.

Согласно теореме Левенгейма — Сколема если множество формул имеет модель, то оно также имеет модель не более чем счетной мощности. С этой теоремой связан парадокс Сколема, который однако является лишь мнимым парадоксом.

Использование

Логика первого порядка как формальная модель рассуждений

Являясь формализованым аналогом обычной логики, логика первого порядка дает возможность строго рассуждать об истинности и ложности утверждений и об их взаимосвязи, в частности, о логическом следовании одного утверждения из другого, или, например, об их эквивалентности. Рассмотрим классический пример формализации утверждений естественного языка в логике первого порядка.

Возьмем рассуждение «Каждый человек смертен. Конфуций — человек. Следовательно, Конфуций смертен». Обозначим «x есть человек» через ЧЕЛОВЕК(x) и «x смертен» через СМЕРТЕН(x). Тогда утверждение «каждый человек смертен» может быть представлено формулой:  \forallx(ЧЕЛОВЕК(x) → СМЕРТЕН(x)) утверждение «Конфуций — человек» формулой ЧЕЛОВЕК(Конфуций), и «Конфуций смертен» формулой СМЕРТЕН(Конфуций). Утверждение в целом теперь может быть записано формулой

( \forallx(ЧЕЛОВЕК(x) → СМЕРТЕН(x))  \and ЧЕЛОВЕК(Конфуций) ) → СМЕРТЕН(Конфуций)

Обобщения

Литература

  • Гильберт Д., Аккерман В. Основы теоретической логики. М., 1947
  • Клини С. К. Введение в метаматематику. М., 1957
  • Мендельсон Э. Введение в математическую логику. М., 1976
  • Новиков П. С. Элементы математической логики. М., 1959
  • Черч А. Введение в математическую логику, т. I. М. 1960



Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Предикатная логика" в других словарях:

  • ЛОГИКА ПРЕДИКАТОВ — центральный раздел логики, в котором изучается субъектно предикатная структура высказывании и истинностные взаимосвязи между ними. Л.п. представляет собой содержательное расширение логики высказываний. В рамках данного раздела любое высказывание… …   Философская энциклопедия

  • Логика второго порядка — в математической логике  формальная система, расширяющая логику первого порядка[1] возможностью квантификации общности и существования не только над атомами, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В… …   Википедия

  • ЛОГИКА — (от греч. logos слово, понятие, рассуждение, разум), или Формальная логика, наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или… …   Философская энциклопедия

  • ЛОГИКА ВЫСКАЗЫВАНИЙ — раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями. В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно …   Философская энциклопедия

  • Логика предикатов —         раздел математической логики (См. Логика), изучающий логические законы, общие для любой области объектов исследования (содержащей хоть один объект) с заданными на этих объектах предикатами (т. е. свойствами и отношениями). В результате… …   Большая советская энциклопедия

  • ФОРМАЛЬНАЯ ЛОГИКА — наука, занимающаяся анализом структуры высказываний и доказательств, обращающая основное внимание на форму в отвлечении от содержания. Определение «формальная» было введено И. Кантом с намерением подчеркнуть ведущую особенность Ф.л. в подходе к… …   Философская энциклопедия

  • Дескрипционная логика — Описательные логики[1] или дескрипционные логики[2][источник не указан 861 день](сокр. ДЛ, англ. description logics, иногда используется неточный перевод: дескриптивные логики)  семейство языков представления знаний …   Википедия

  • ПРЕДИКАТНЫЙ СИМВОЛ — предикатная буква, обозначение какого либо конкретного предиката. Напр., символом часто обозначают отношение порядка на действительных числах, являющееся двуместным предикатом. При формальном построении языка символы, отнесенные к категории… …   Математическая энциклопедия

  • СУЖДЕНИЕ — мысль, выражаемая повествовательным предложением и являющаяся истинной или ложной. С. лишено психологического оттенка, свойственного утверждению. Хотя С. находит свое выражение только в языке, оно, в отличие от предложения, не зависит от… …   Философская энциклопедия

  • Понятие — Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения. Понятие  отображённое в мышлении единство существенных свойств, связей и отношен …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»